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Electronic transport through a triple quantum dot system, with only a single dot coupled directly to external
leads, is considered theoretically. The model includes Coulomb correlations in the central dot, while such
correlations in the two side-coupled dots are omitted. The infinite-U mean-field slave-boson approach is used
to obtain basic transport characteristics in the Kondo regime. When tuning the position of the side-coupled
dots’ levels, transition from subradiant to superradiant-like mode �and vice versa� has been found in the
spectral function, in analogy to the Dicke effect in atomic physics. Bias dependence of the differential con-
ductance and zero-frequency shot noise is also analyzed.
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I. INTRODUCTION

Kondo effect in electronic transport through quantum dots
�QDs� strongly coupled to external leads is a many-body
phenomenon which occurs at temperatures T lower than the
so-called Kondo temperature TK, T�TK. The Kondo tem-
perature is characteristic of a particular system and depends
on the corresponding parameters �energy of the dot level,
coupling strength to external leads, Coulomb parameter�.
Spin fluctuations in the dot, generated by coupling of the dot
to external leads, give rise to a narrow peak in the dot’s
density of states �DOS� at the Fermi level. This Kondo peak
enhances transmission through the dot, and leads to the uni-
tary limit of the linear conductance at zero temperature,
where the conductance reaches 2e2 /h. The Kondo peak in
DOS also leads to the so-called zero-bias �Kondo� anomaly
in the differential conductance.

The Kondo effect in electronic transport through single
quantum dots was extensively studied in the last two de-
cades, both theoretically1–9 and experimentally.10,11 Recently,
the Kondo-assisted transport through double-dot systems in
the T-shaped,12–14 parallel,14–22 and series18,23–28 geometries
has also been addressed. There are, however, only a few
papers on the Kondo phenomenon in electronic transport
through triple-dot structures.29–35 Such complex dot systems
are of current interest from both fundamental and application
points of view. Especially the interference effects in elec-
tronic transport attract much attention, as the multidot sys-
tems offer a unique possibility to study fundamental phe-
nomena which were earlier observed in solid-state physics
and/or quantum optics. By specific design and fabrication of
QD systems, one can investigate for instance the Aharonov-
Bohm oscillations,36 Fano resonance,37,38 and others.

Very recently, the Dicke effect, which is well known in
atomic optics,39,40 has been predicted also for electronic
transport through quantum systems.41–48 The key feature of
the Dicke resonance in optics is the presence of a strong and
very narrow spontaneous emission line �in addition to much
broader lines� of a collection of atoms which are separated
by a distance smaller than the wavelength of the emitted
light.39,40 Generally, the narrow �broad� line is associated
with a state which is weakly �strongly� coupled to the elec-

tromagnetic field, and such long-lived �short-lived� state is
called subradiant �superradiant� mode. In this paper we con-
sider another realization of the Dicke-type effect, i.e., the
Kondo-Dicke resonances in electronic transport through a
system of three coupled quantum dots, where two side-
coupled dots are noninteracting �vanishing Coulomb param-
eter, U=0�, while the central dot is coupled to the leads and
is in the deep Kondo regime. In addition, we also observe
behavior of the Kondo peak in DOS, which resembles the
transition from subradiant to superradiant mode �or vice
versa� in the usual Dicke effect. The theoretical approach we
use in this paper is based on the slave-boson technique in the
mean-field approximation.

The paper is organized as follows: In Sec. II we describe
the model of a three-dot system, and present the correspond-
ing Hamiltonian in the slave-boson formulation. The mean-
field approach to the problem is described in Sec. III. Nu-
merical results on the Kondo problem are shown and
discussed in Sec. IV for symmetric and asymmetric systems.
Final conclusions are given in Sec. V.

II. DESCRIPTION OF THE MODEL

In this paper we consider a system of three single-level
quantum dots. The whole system is coupled to external leads
as shown schematically in Fig. 1. The two side dots, labeled
as QD1 and QD3, are coupled to the central dot QD2 via a
direct hopping term. The dot QD2, in turn, is additionally
attached to external electron reservoirs �see Fig. 1�. More-
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FIG. 1. �Color online� Schematic picture of the quantum dot
system coupled to external leads. ��

� ��=L ,R� describe coupling of
the dot QD2 to the external leads, whereas tj2� is the hopping pa-
rameter between the dot QD2 and the jth dot, j=1,3.
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over, the central dot is assumed to be in the Kondo regime,
while the side dots are beyond the Kondo regime �for sim-
plicity they are assumed to be noninteracting, U=0�. The
system under consideration can be modeled by the Anderson
impuritylike Hamiltonian of the following form:

Ĥ = �
k��

�k��ck��
† ck�� + �

i�

�i�di�
† di� + Un2�n2�̄

+ �
j�=1,3�

�
�

�tj2�d2�
† dj� + H.c.�

+ �
k�

�
�

�Vk�
� ck��

† d2� + H.c.� . �1�

The first term describes the left ��=L� and right ��=R� elec-
trodes in the noninteracting quasiparticle approximation,
with ck��

† �ck��� being the creation �annihilation� operator of
an electron with the wave vector k and spin � in the lead �,
and with �k�� denoting the corresponding single-particle en-
ergy.

The next three terms of the Hamiltonian describe the sys-
tem of three coupled quantum dots. Here, �i� is the energy of
the discrete level in the ith dot �i=1,2 ,3�, while tj2� denotes
the hopping parameter between the jth dot �j=1,3� and the
dot QD2. Both �i� and tj2� can be spin dependent in a gen-
eral case. Furthermore, the term with U describes the intradot
Coulomb interactions in the dot QD2, with U denoting the
corresponding Coulomb integral. The interdot Coulomb re-
pulsion, similarly as the intradot Coulomb interaction for the
dots QD1 and QD3, is assumed to be small and therefore
neglected.

The last term of the system’s Hamiltonian describes elec-
tron tunneling from the leads to the dot QD2 �or vice versa�,
with Vk�

� denoting the relevant matrix elements ��=L ,R�.
Coupling of the dot QD2 to external leads can be parameter-
ized in terms of ��

����=��kVk�
� Vk�

��	��−�k���. We assume
that ��

���� is constant within the electron band of the leads,
��

����=��
�=const for �� �−D ,D�, and ��

����=0 otherwise.
Here, 2D denotes the electron band width, and the energy �
is measured from the Fermi level.

The following considerations are restricted to the limit of
infinite intradot Coulomb parameter for the dot QD2, U
→
, so the double occupancy on the central dot is forbidden
�only one electron can reside in the central dot�. This as-
sumption allows us to employ the infinite-U slave-boson
mean-field �SBMF� approach49 to analyze transport proper-
ties. However, one should bear in mind that the SBMF
theory is valid only for low bias at zero temperature.

In the slave-boson approach, one introduces a set of aux-
iliary operators for the central dot. The dot’s creation �anni-
hilation� operator d2�

† �d2�� is then replaced with f2�
† b2

�b2
†f2��. Here, b2 �f2�� is the slave-boson �pseudofermion�

annihilation operator for an empty �singly occupied with a
spin-� electron� state of the dot QD2. To eliminate nonphysi-
cal states, the following constraint has to be imposed on the
new quasiparticles:

Q̂ = �
�

f2�
† f2� + b2

†b2 = 1. �2�

Equation �2� is a completeness relation of the Hilbert space
for the central dot. Accordingly, the Hamiltonian �1� can be

replaced by an effective Hamiltonian, expressed in terms of
the auxiliary boson b2 and pseudofermion f2� operators as

H̃ = �
k��

�k��ck��
† ck�� + �

�

��1�d1�
† d1� + �3�d3�

† d3��

+ �
�

�2�f2�
† f2� +

1
�N

�
j�=1,3�

�
�

�tj2�f2�
† b2dj� + H.c.�

+
1

�N
�
k�

�
�

�Vk�
� ck��

† b2
†f2� + H.c.�

+ ���
�

f2�
† f2� + b2

†b2 − 1� . �3�

The last term with the Lagrange multiplier � has been intro-
duced to incorporate the constraint for QD2, given by Eq.
�2�, which prevents double occupancy of the central dot.
Apart from this, N�=2� in Eq. �3� stands for the spin degen-

eracy of the QD2. One can check that the number operator Q̂
	see Eq. �2�
 commutes with this new Hamiltonian, so the
total particle number of f-electrons and slave bosons is con-
served.

III. MEAN-FIELD APPROACH

The mean-field approximation �MFA� adopted to the
slave-boson method relies on replacing the boson field b2 by
its expectation value. Thus, in the lowest order �in the 1 /N
expansion�, the slave-boson operator is substituted by a real
and independent of time c number, b2�t� /�N→ �b2�t�� /�N

� b̃2. This approximation neglects fluctuations around the
average value �b2�t�� of the slave-boson operator, but takes
into account spin fluctuations �Kondo regime�—exactly at
T=0 K and in the limit of N→
. On the other hand, one
should bear in mind that MFA cannot be applied in the
mixed-valence regime, where strong charge fluctuations take
place. That is why the MFA approach restricts our consider-
ations to the low bias regime �eV� ��2��. Introducing the fol-

lowing renormalized parameters t̃ j2�= b̃2tj2�, Ṽk�
� =Vk�

� b̃2, and
�̃2�=�2�+�, the effective MFA Hamiltonian can be rewritten
as

H̃MFA = �
k��

�k��ck��
† ck�� + �

i=1,3
�
�

�i�di�
† di�

+ �
�

�̃2�f2�
† f2� + �

j�=1,3�
�
�

�t̃ j2�f2�
† dj� + H.c.�

+ �
k�

�
�

�Ṽk�
� ck��

† f2� + H.c.� + ��Nb̃2 − 1� . �4�

One needs now to find the unknown parameters b̃2 and �.
These can be determined from the constraint imposed on the
slave bosons 	Eq. �2�
, and from the equation of motion for
the slave-boson operators. As a result, one finds two equa-
tions,

1

N
�
�

�f2�
† f2�� + b̃2

2 =
1

N
, �5�
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�
j=1,3

�
�

t̃ j2�
� �dj�

† f2�� + �
k��

Ṽk�
� �ck��

† f2�� + N�b̃2
2 = 0. �6�

There is also another way to obtain the above equations.

The free parameters b̃2 and � can be determined by minimiz-
ing the ground-state energy of the effective MFA Hamil-
tonian with respect to these parameters. Application of the
Hellmann-Feynman theorem to the Hamiltonian �4�, together

with the conditions for minimal energy ���H̃MFA� /�b̃�=0

= ���H̃MFA� /���, gives a set of self-consistent equations.
These equations in the Fourier space read

b̃2
2 − i�

�
 d�

2�N
��f2��f2�

† ���
� =

1

N
, �7�

− i �
j=1,3

�
�

t̃ j2�
�  d�

2�
��f2��dj�

† ���
�

− i�
k��

Ṽk�
�  d�

2�
��f2��ck��

† ���
� + N�b̃2

2 = 0, �8�

where ��f2� �dj�
† ���

� and ��f2� �ck��
† ���

� are the Fourier trans-
forms of the lesser Green’s functions; the former being de-
fined as G2j

��t , t�����f2��t� �dj�
† �t�����= i�dj�

† �t��f2��t�� and a
similar definition also holds for ��f2��t� �ck��

† �t�����.
To rewrite Eq. �8� in a different form, we write first the

equation of motion for f2��t�. Then, we multiply this equa-
tion by f2�

† �t�� and take the thermal average. Upon express-
ing the obtained equation in terms of the lesser Green’s func-
tions, and taking its Hermitian conjugation, one finds

�� − �̃2����f2��f2�
† ���

� = �
j=1,3

�
�

t̃ j2�
� ��f2��dj�

† ���
�

+ �
k��

Ṽk�
� ��f2��ck��

† ���
�. �9�

When substituting Eq. �9� into Eq. �8�, one finally arrives at
the equation

− i�
�
 d�

2�
�� − �̃2����f2��f2�

† ���
� + N�b̃2

2 = 0. �10�

Formulas �7� and �10� are our final equations for the un-
known parameters. To solve them one still needs to deter-
mine the lesser Green’s function ��f2� � f2�

† ���
�. This can be

derived from the corresponding equation of motion. Simi-
larly, the equation of motion can also be used to derive the
retarded Green’s function �which is also required in our cal-
culations�. As a result one finds

G22�
r ��� =

1

� − �̃2� + i�̃� −
t̃32�
2

�−�3�
−

t̃12�
2

�−�1�

, �11�

G22�
� ��� =

2i	fL����̃�
L + fR����̃�

R


�� − �̃2� + i�̃� −
t̃32�
2

�−�3�
−

t̃12�
2

�−�1�
�2

, �12�

where f���� is the Fermi-Dirac distribution function in lead

�, �̃�
�= b̃2

2��
� and �̃�= �̃�

L + �̃�
R are the renormalized param-

eters describing coupling of the dot QD2 to external leads.
Electric current J flowing through the system can be de-

termined from the formula

J =
e

h
�
�
 d�	fL��� − fR���
T���� , �13�

where T����=4G22�
a �̃�

RG22�
r �̃�

L is the transmission probabil-
ity. It is worth noting that the above current formula is simi-
lar to that used for noninteracting QD systems. In our case,
however, the transmission probability depends on the renor-

malized parameters �̃�
�, �̃2� and t̃ j2�, which depend on the

gate and transport voltages. At T=0 K, the current and linear
conductance are given by the formula

J0 =
e

h
�
�


−eV/2

eV/2

d� T���� , �14�

and

GV→0 = lim
V→0

dJ

dV
=

e2

h
�
�

T��� = 0� . �15�

IV. NUMERICAL RESULTS

In numerical calculations we assume that the dot levels
and the hopping parameters are independent of electron spin,
�i�=�i �for i=1,2 ,3�, tj2�= tj2 for j=1,3, and ��

�=�� �for �
=L ,R�. The energy levels �i are measured from the Fermi
level of the leads in equilibrium �L=R=0�. In the follow-
ing we set the bare level of the dot QD2 at �2=−3.5�, and
the bandwidth is assumed to be D=60�. In this paper all the
energy quantities will be expressed in the units of � ��
=�L+�R�. The energy levels �1 and �3 can be tuned by ap-
plying gate voltages to QD1 and QD3. Taking into account
the above parameters, the Kondo temperature TK of the cen-
tral dot for t12= t32=0 can be estimated to be TK=10−3�
�kB=1�.

A. Density of states

We start from the local density of states �LDOS� at equi-
librium, D2, for the central dot QD2, which can be calculated
from the formula

D2 = −
b̃2

2

�
�
�

I	G22�
r ���
 , �16�

where I	A
 denotes the imaginary part of A.
To understand basic features of the LDOS D2 in the

Kondo regime and the influence of side-coupled dots, we
consider first the situation when the dot levels are fixed while
the coupling between the dots can be changed. Let the bare
levels of the side dots QD1 and QD3 be fixed at TK and −TK,
respectively. The corresponding LDOS for the dot QD2 is
shown in Fig. 2 for several values of t12= t32� t. Assume first
that the central dot is detached from the two dots QD1 and
QD3, t=0 �solid line in Fig. 2�. The peak at the Fermi level
in D2 reveals then the usual Kondo phenomenon in a single
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dot, which leads to the Kondo anomaly in transport through
the dot �to be discussed later�. When the interdot coupling
strength t is nonzero, two additional asymmetric satellite
peaks emerge in LDOS D2 symmetrically on both sides of
the central Kondo peak. These two peaks move away from
the central peak as t increases. At the same time, the widths
of the satellite peaks increase, while the central peak be-
comes narrower.

It is instructive to consider the situation with asymmetri-
cally coupled dots. LDOS for the dot QD2 in such a case is
shown in Fig. 3, where it has been assumed that the energy
levels of the dots QD1 and QD3 are located symmetrically
with respect to the Fermi level at equilibrium, similarly as in
Fig. 2. Coupling of the dot QD1 to the central dot is fixed,
t12=0.03, while that of the dot QD3 changes from zero to full
coupling t32= t12=0.03. When one of the side dots �QD3 in
the case shown in Fig. 3� becomes decoupled from the

Kondo dot, t32=0, LDOS for the dot QD2 reveals two peaks.
The one around the Fermi level is the Kondo peak, which
now becomes highly asymmetric. The second peak is asso-
ciated with the discrete level of the side dot attached to the
central one. As it has been shown by Wu et al.,12 the DOS
can be then decomposed into two components: one of the
Breit-Wigner line shape and another one of the Fano line
shape. When the second dot is attached to the central one, a
new peak appears on the second side of the Kondo peak. If
the two dots are coupled symmetrically, t32= t12, the spectrum
becomes symmetric and the Kondo �central� peak becomes
narrower.

In Fig. 4 the LDOS for the dot QD2 is shown for different
energy levels of the side-coupled dots, while coupling of
these dots to the central dot is fixed, t12= t32= t=0.03�. It has
been assumed there that the energy levels of the dots QD1
and QD3 are located symmetrically with respect to the Fermi
level at equilibrium, �1=h and �3=−h. For a nonzero h, the
LDOS reveals three well-defined peaks, already seen in Fig.
2. The central peak �the main Kondo peak� is located at the
Fermi level of the leads. The width of the central peak, how-
ever, becomes narrower and narrower with decreasing h, and
the peak has almost a 	-like shape for very small values of h,
h�TK. This means that the Kondo state associated with this
maximum becomes then more and more localized at the
Fermi level. In analogy to the Dicke effect, which is well
known in optics, the narrow central peak in LDOS may be
considered as a long-lived �subradiant� state, whereas the
other two peaks as corresponding to short-lived �superradi-
ant� states. It is interesting to note that one can observe tran-
sition from subradiant to superradiant mode �and vice versa�
by tuning separation of the side-coupled dots’ levels from the
Fermi level, e.g., by gate voltages. Thus, a particular state,
for example the one at the Fermi level, is subradiant-like for
small values of h �h�TK�, and superradiant-like for large
values of h �h�TK�. Accordingly, the satellite peaks are then
superradiant for small values of h and subradiant for large
values of h. When the energy levels of the side-coupled dots
coincide with the Fermi level, h=0, the Kondo peak �central
peak� in LDOS is suppressed and disappears.
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FIG. 2. �Color online� Local density of states for the dot QD2,
calculated for indicated values �in the units of �� of the interdot
coupling strength t12= t32= t, and for �1=−�3�h=TK=0.001�.
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FIG. 3. �Color online� Local density of states for the dot QD2
calculated for indicated values of t32 and t12 and for �1=−�3=TK.
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FIG. 4. �Color online� Local density of states for the dot QD2
calculated for indicated values of h �h=�1=−�3�, and for the inter-
dot coupling t12= t32= t=0.03�.
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As shown in Fig. 4, the central peak becomes narrower
and narrower when the discrete levels of the side dots be-
come closer and closer to the Fermi level �but located on
opposite sides of the Fermi level�, h tends to 0. One may say
that the Kondo peak becomes “squeezed” by the side dots.
This narrowing is a consequence of the interference of all
virtual processes leading to the Kondo peak, which are modi-
fied by coupling to the side dots. More specifically, this is a
consequence of the interference of terms associated with
transitions between leads and central dot and between central
dot and side dots. In the limit of h=0 the Kondo is then
totally suppressed. One might then expect that the direct �not
due to Kondo effect� contribution from side dots may be
nonzero at the Fermi level. However, the “molecular” state
corresponding to the energy equal to the Fermi level is then
located on the side dots and is also detached from the leads
�a bound state in a continuum50�.

For large values of the side dots’ level separation �h
�TK�, the satellite peaks are narrow, while the central peak
is then relatively broad �see Fig. 4�. This situation is quali-
tatively similar to that observed in Ref. 51. However, the
width of the central peak is now a complex nonmonotonic
function of the level separation h �due to self-consistent pa-

rameters b̃2, ��. The width of the peak increases for small
values of h achieving a maximum and then decreases very
slowly �even for large values of h�. Moreover, in the nonlin-
ear response regime, when a nonzero bias voltage is applied
to the system, the width of the central peak is further sup-
pressed, especially for large h. Position of the maximum
moves to smaller values of h as bias voltage increases. An-
other new feature is a broad range of very small LDOS be-
tween the central maximum and the satellite peaks for larger
values of h.

To summarize this section we conclude that the width of
the Kondo peak in LDOS can be changed by tuning both the
level position of side dots and the interdot coupling strength.
Such systems give us an opportunity to study crossover of
the Kondo peak from the subradiant-like to superradiant-like
mode, and vice versa.

B. Differential conductance

Now we consider nonlinear differential conductance
dJ /dV. In Fig. 5 we show differential conductance as a func-
tion of the applied voltage for the case when the dot QD1 is
coupled to the Kondo dot with a constant strength, t12
=0.04�, while the coupling strength of the dot QD3 is gradu-
ally switched on. For comparison we have also shown there
the curve for the Kondo dot totally decoupled from both side
dots, t12= t32=0. Owing to the Kondo resonance, the unitary
limit of the conductance is then reached for zero-bias limit.
This is a well-known behavior of transport through a single
Kondo dot. Let us now turn on the coupling of the Kondo dot
to one of the side dots, say to the dot QD1. The zero-bias
anomaly becomes then suppressed as a consequence of the
interplay between the Fano interference and the Kondo
effect.12 For a sufficiently large t12, the zero-bias anomaly
may even disappear. However, the situation becomes more
complex when the second side dot �QD3� is attached to the

Kondo dot and starts to play a role in transport. With increas-
ing coupling strength t32 of the dot QD3 to the dot QD2, one
observes revival of the zero-bias anomaly peak, which for
t32= t12 reaches unitary limit for zero bias. Interplay of the
Dicke and Kondo resonances leads, however, to a faster de-
crease in the conductance at small voltages, and slower at
higher voltages. As a consequence, a tail in the conductance
survives at higher voltages, where the conductance of the
Kondo dot detached from the side dots already disappears.
This behavior is a consequence of the narrowing of the cen-
tral Kondo peak in LDOS and the occurrence of two satellite
peaks �see discussion in Sec. IV A�. This behavior is clearly
seen in Fig. 6, where the bias dependence of the differential
conductance is shown for several values of the interdot cou-
pling parameters, t32= t12= t. The zero-bias conductance in
such a symmetrical case does not depend on the value of t,
which reflects the LDOS behavior �see Fig. 2�.
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FIG. 5. �Color online� Differential conductance as a function of
the applied bias voltage for indicated values of the interdot cou-
plings �measured in the units of ��.
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FIG. 6. �Color online� Differential conductance as a function
of the bias voltage for indicated values of the interdot couplings
t= t12= t32 �measured in the units of ��.
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Similar behavior also occurs when the coupling strength
t12= t32� t is fixed while the level separation of the side-
coupled dots is changed �see Fig. 7�. For large values of h
the conductance decreases with increasing bias monotoni-
cally. However, for small values of h the differential conduc-
tance is a nonmonotonic function of the applied bias voltage.
It falls down rapidly in the region of small bias voltages
achieving a minimum value at some voltage, and then rises
again. These features are quite reasonable because the satel-
lite peaks move away from the central peak as h increases.
Thus, for large values of h the satellite peaks do not contrib-
ute to electronic transport. For a small h, however, the satel-
lite peaks enter the transport window and contribute to cur-
rent, leading to an increase in the conductance above a
certain bias voltage. It is worth noting that the zero-bias
anomaly for h=0 is totally suppressed and the differential
conductance slowly rises as the bias voltage is applied. This
suppression is a consequence of the suppression of the
Kondo peak in DOS due to the interplay of the Dicke and
Kondo resonances.

C. Shot noise

The only nonzero contribution to the noise in electronic
transport at zero temperature, T=0 K, is the shot noise,
while the thermal noise is then totally suppressed. The qua-
dratic form of the MFA Hamiltonian allows us to express the
zero-frequency shot noise in the form52

S =
2e2

h
�
�


−eV/2

eV/2

d�T����	1 − T����
 . �17�

Deviation of the shot noise S from the Poisson value, SP
=2eJ, is usually characterized by the Fano factor �=S /2eJ,
which for the Poissonian noise is exactly equal to 1.

In Fig. 8, the bias dependence of the Fano factor is dis-
played for different interdot coupling parameters t32, whereas

the parameter t12 is fixed at 0.04�. For the T-shape geometry
�one side dot is decoupled from the central dot QD2, t32=0�,
the Fano interference plays a significant role in transport pro-
cesses, and—as discussed above—leads to suppression of
the zero-bias anomaly below the unitary limit. This is also
manifested in the shot-noise characteristics. The zero-bias
limit of the Fano factor is larger than zero, and this behavior
is a result of the weakening of the Kondo peak at the Fermi
level due to the Fano interference. With increasing t12, but
still having t32=0, the Fano interference outweighs the
Kondo effect and the Fano factor � tends to unitary limit
�shot noise tends to the Poissonian value�. When coupling of
the dot QD3 to the dot QD2 is turned on, the zero-bias Fano
factor drops and finally for a symmetric system, t12= t32,
reaches zero as for the single quantum dot. As a result, the
system is ideally transparent for electrons at the Fermi en-
ergy �at equilibrium�.
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FIG. 7. �Color online� Differential conductance as a function of
the bias voltage for indicated values of the coupling strengths �mea-
sured in the units of ��, and indicated energy levels of the side-
coupled dots, �1=−�3=h.
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FIG. 8. �Color online� Fano factor as a function of the applied
bias voltage for indicated values of the interdot couplings �mea-
sured in the units of ��.
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sured in the units of ��.
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Figure 9 shows the Fano factor as a function of the ap-
plied voltage for various interdot couplings, t32= t12= t. Ap-
plied bias voltage partially suppresses the Kondo effect,
which results in the growth of the Fano factor. This growth is
faster for smaller values of t.

When the levels of the side-coupled dots are located at the
Fermi level �h=0�, the zero-bias Fano factor achieves the
Poissonian value and then slowly falls down with increasing
bias voltage �see Fig. 10�. In contrary, the zero-bias limit of
the Fano factor for a nonzero level separation of the side-
coupled dots is zero and tends to the Poissonian limit with
increasing bias voltage. One can then note a sudden increase
in the Fano factor for a small value of the level separation,
h�TK, while for h�TK the Fano factor remains small over a
wider range of the bias voltage before it grows to the Poisson
limit.

In Fig. 11 the Fano factor � is plotted as a function of t for
a fixed bias voltage eV=TK and for different positions of the
side-coupled dots’ levels ��1=h, �3=−h�. When the bare lev-
els of side-coupled dots are in the transport window, the
Fano factor is then significantly affected by the interdot cou-
pling. For a very small value of h, the Fano factor grows
rapidly from a small value at zero interdot coupling to its
maximum values, and then falls down to half of the Poisso-
nian value at sufficiently strong couplings. It is worth noting
that the Fano factor does not reach the Poissonian limit for
any h, except the case of h=0. In turn, for h�TK the Fano
factor � is less sensitive to the interdot coupling strength.
The central peak in the LDOS is then very broad and gives a
large contribution to the differential conductance. One can
also note that for a large value of h, � remains small in a
wider range of the interdot coupling before it rises to half of
the Poisson value. Contrary to the case of small h, one can
now see a minimum in the Fano factor �for a finite bias�.
Thus, the Kondo-assisted transport is optimized for t= tmin.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the effects due to inter-
play of the Kondo and Dicke resonances in electronic trans-
port through a three-dot system. One of the dots �that at-
tached to the leads� was in the Kondo regime, while the two
side dots were out of the Kondo regime. Using the method
based on the slave-boson mean-field approximation we have
calculated local density of states, differential conductance,
and shot noise. The slave-boson technique requires the as-
sumption of infinite U for the Kondo dot. On the basis of
what is known from results obtained for single dots by other
methods that allow for finite U, one may expect that the
Kondo peaks considered here will become narrower for
smaller values of U.

The Kondo peak in the local density of states of the cen-
tral dot becomes narrower due to the interplay of the Kondo
and Dicke effects. The Kondo peak is even totally sup-
pressed when the bare energy levels of the side dots are
equal and located at the Fermi level. This leads to suppres-
sion of the zero-bias Kondo peak in the differential conduc-
tance. The interplay of the Kondo and Dicke resonances also
has a significant impact on the shot-noise characteristics.

In our description we have neglected electron correlations
on the side dots. When this is taken into account, one could
expect doubling of some of the peaks associated with side
dots, similarly as in the case of double-dot systems.38
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